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ABSTRACT 

The evaluation of the vibrational response of large complex structural systems subjected to dynamic loads is 
computationally expensive and time consuming. Recently developed numerical techniques, the Lanczos and Ritz-
Wilson methods, based on the Rayleigh-Ritz transformation can reduce the size of the problem and thus the 
amount of calculations required for the solution. In this research, a number of Ritz algorithms and analysis 
procedures based on the Lanczos method and the load-dependent derived Ritz algorithms have been implemented 
in a comprehensive computer program for the static and dynamic analysis of bridge structures. A new cut-
off criterion based on the concept of effective mass participation to generate the truncated set of Ritz vectors 
for multi-directional seismic response analysis has been developed and implemented in the computer program. 
Numerical examples of the free vibration and seismic response analysis of bridges are presented. 

INTRODUCTION 

The dynamic behaviour of many engineering structures, especially those that can be severely affected by strong 
earthquakes, is an important factor for consideration in their design. The evaluation of the dynamic response 
of large structural systems subjected to dynamic loads is generally very time consuming and computationally 
expensive. In the modal superposition method, the vibration mode shapes obtained from the eigenproblem of 
the system are used as the transformation basis to reduce the size of the dynamic problems and then evaluate 
the dynamic response of the structural systems. In general, the determination of the natural frequencies and 
displacement shapes of the required vibration modes for the modal superposition analysis of a large complex 
system is very costly. Recent research has shown that other numerical techniques, such as the Lanczos method 
using transformation vectors generated in the Krylov space, can be more efficient in calculating the vibrational 
frequencies and mode shapes of large sparse matrix systems (Wilson et al. 1982, Nour-Omid and Clough 1984, 
Leger 1988, Ruchala and Lau 1996). 

In the present study, the numerical techniques of the Lanczos and Ritz-Wilson methods for the dynamic response 
analysis of bridge structures have been further developed and implemented in a comprehensive computer program, 
specifically designed to analyze complex bridge systems. Numerical examples of frequency and time history re-
sponse analysis of a highway bridge are presented to illustrate the capabilities of the implemented Ritz algorithms, 
and to investigate their accuracy and efficiency. 

RITZ ALGORITHMS 

In the derivation of the Lanczos method solution for the eigenvalue problem of a structural system defined by 
the stiffness matrix K and mass matrix M, a vector r is selected as the starting initial vector to generate the 
coordinate sequence of Ritz vectors {r, K- r,  (K-1m)2r, (K-im)nr,  j- known as the Krylov sequence. 
The Gram-Schmidt orthogonalization procedure is applied to each generated vector to make it orthogonal to the 
vectors derived in the previous steps. 

It can be shown that the orthogonalization procedure need be applied only to the two preceding vectors, so that 
the Lanczos vectors can be efficiently generated by the three term recurrence formula written as follows 

= f3j+iqi + i = 1C-1Mqj - qi q.j-1 (1) 

where T- a, - qi  m mcb 

i3i  = (rT i Mri _01/ 2  (2) 
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As a result, a set of M-orthonormal vectors Qm  = { q i , q2 , , qm} is constructed which can be used for the 
Rayleigh-Ritz reduction of the standard equations of motion expressed as follows 

Mil+ CU+ Ku = f(s)g(t) (3) 

where the vectors ii, u and u are respectively the acceleration, velocity, and displacement vectors which describe 
the response of the structure, M, C and K are respectively the square n x n mass, damping, and stiffness matrices, 
f(s) is a spatially distributed load function, unchanged with time, and g(t) is a time-varying scalar amplitude 
function. 

Assuming the damping property of the system in the form of Rayleigh damping which can be expressed as a linear 
combination of the mass and stiffness matrices, the equations of motion given by Equation 3 can be transformed 
from the geometric coordinates u to the generalized Ritz coordinates z as follows 

Tmi + [aoTm + aiLdi z = eMK-lf(s)g(t) (4) 

using the transformation 
u(t) = Qm Z(t) (5) 

In Equation 4, Tm  is a tridiagonal matrix made up of the coefficients ali s in the diagonal and 3.7 's in the sub-
diagonal of the matrix, which can be expressed as follows 

Tm  = Ceni'MK-1MQ, (6) 

The reduced tridiagonal equations of motion can be solved directly by step-by-step integration procedures to 
determine the dynamic response of the system. 

Recently, other Ritz type numerical analysis procedures have been developed independent of the Lanczos algorithm 
for dynamic analysis of structural system based on the physical consideration of the behaviour of the systems. 
However, it can be shown that many of these numerical procedures may be considered as variations of the original 
Lanczos algorithm. 

When the initial vector in the original Lanczos algorithm is taken as the static displacement vector obtained from 
the spatially distributed dynamic load applied as static load to the system, the constructed Lanczos coordinates, 
denoted by obi's, are called the derived Ritz vectors (DRV). The derived Ritz vectors, T, have the important 
characteristic that the first DRV vector represents a static response to the dynamic load so that there is no need 
for a static correction in the analysis. 

Another numerical algorithm has been developed by Wilson et al. (1982) to generate the Ritz coordinates by 
considering also the spatial distribution of the applied load in dynamic response analysis. The Ritz-Wilson 
algorithm has been modified by Leger (1988) with improvement on the numerical stability of the algorithm. 
The improvement is achieved by using at each step an improved static vector obtained from a one-step inverse 
iteration procedure. The modified Ritz-Wilson method is also referred to as the LWYD algorithm. It is important 
to note here that with the introduction of the updated static vectors in the LWYD algorithm, the generated load-
dependent Ritz vectors not longer form a Krylov space. Thus, the LWYD method is not a Lanczos type procedure. 

REORTHOGONALIZATION SCHEMES 

Although in theory orthogonality to all preceding shapes is ensure by orthogonalizing the new shape against the 
two preceding shapes, the accumulation of round-off errors and the convergence of an eigenvalue will lead to the 
loss of orthogonality among the Lanczos vectors. In the present study, a number of reorthogonalization schemes 
have been implemented in the computer program to prevent the loss of orthogonality among the Lanczos vectors, 
depending on the required level of orthogonality. 

Selective Reorthogonalization 
In the developed program, orthogonality among Lanczos vectors can be maintained by orthogonalizing the new 
Lanczos vector qi+1  against the converged eigenvectors. As the Lanczos algorithm proceeds, orthogonality among 
the Lanczos vectors starts to deteriorate when one of the eigenvectors begins to converge. The growth of the 
components of the Lanczos vector along a converged eigenvector indicates the return of a banished eigenvector. 
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and = rTMxi (9) 

The state of orthogonality between a converged eigenvector, y,, and the current Lanczos vector, qj, can be 
measured by the component of yi along qj  using the following recurrence relationship 

(0i  — eti  )7j  — [3j  

fj+1
(7) 

The three term recurrence formula for rj+i  is updated at each step with To  set to zero at the first step. Whenever 
rj +1  becomes greater than the tolerance, T2+1  > it signals that the component of the corresponding converged 
eigenvector yi has grown too much along qi+1. The vector yi is then explicitly deflated out of qi+1. After 
orthogonalization 73+1  is set back to e. 

Partial Reorthogonalization 
To alleviate the problem of the loss of orthogonality due to convergence of an eigenvalue, another semi-orthogonalization 
scheme called the partial reorthogonalization method proposed by Simon (1984) has been implemented in the 
computer program. In this scheme, the level of orthogonality of the vector qj+i with the previous Lanczos vectors 
is monitored by the inner product wj = qr+iMQj using the following recurrence relationship 

+ wi = Tj wj — ajwj — Njwj- 1 (8) 

Whenever any element in the vector wj+1  becomes greater than the Lanczos vector qi+i  is orthogonalized 
against all previous vectors Q.  . To start the recurrence, mi.()  is set to zero and w1  = q21VIq1. The computation of 
wi+i  involves only the simple update of two vectors. Furthermore, it is not necessary to reorthogonalize in every 
step, therefore the overall amount of computation for the reorthogonalization process is reduced as compared to 
the full reorthogonalization scheme. 

Combined Reorthogonalization Scheme 
Since in the selective reorthogonalization scheme the new Lanczos vector qi+i  is orthogonalized against the 
converged eigenvectors rather than against all the previous Lanczos vectors, it costs less in comparison to the 
partial reorthogonalization procedure. To consider this advantage and to account for the two mechanisms involved 
in the loss of orthogonality, a combined reorthogonalization scheme has also been implemented. In the combined 
procedure, the condition of the loss of orthogonality is first determined by Equation 8, followed by the evaluation 
of Equation 7 to determine the cause of the failure. The appropriate reorthogonalization steps are then taken as 
discussed earlier. Details of implementation can be found in the reference (Ruchala 1997). 

CUT-OFF CRITERION 

The above Ritz algorithms have been implemented in the computer program NEABS, Nonlinear Earthquake 
Analysis of Bridge Systems, specially developed for detailed linear and nonlinear dynamic analysis of bridges (IAI-
NEABS 1991). To determine the proper number of Ritz vectors that should be included in a dynamic analysis in 
order to obtain the required accuracy in a truncated system, a new cut-off criterion capable to consider the effect 
of multi-directional earthquake loads has been developed and implemented in the computer program. The new 
cut-off criterion is expressed as follows 

where rj is the influence coefficient vector for base excitation in the j—direction, L is the number of Ritz vectors 
used in the analysis and M is the number of direction in which the mass of the system is activated by ground 
motion. The new cut-off criterion is based on the level of mass participation in the dynamic response of the system. 
It takes into account the mass excited into motion in all directions by the multi-directional ground motions. 

NUMERICAL EXAMPLES 

Numerical results obtained from the analysis of a five-span composite concrete slab on steel box girder bridge 
using the developed computer program are presented in this section. The typical cross section and elevation of 
the bridge are shown in Figure 1. The analysis model, which consists of the bridge superstructure and the piers, 
has 594 nodes with 778 elements and a total of 3008 degrees-of-freedom. The bridge is assumed to have a 5% 
damping in the analysis model. 
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Results for the first 15 natural vibration frequencies are presented in Table 1. When only the computational time 
of eigensolution is considered, it is 4.6 times more efficient to extract 15 exact vibration modes by the Lanczos 
method than by the subspace iteration procedure. The computational CPU time used by both the Lanczos and 
Ritz-Wilson methods to obtain the approximate solutions are very similar. As can be observed from the results 
shown in Table 1, the converged approximate solutions by the Ritz algorithms do not necessary correspond to the 
lowest modes. In fact, the converged results are dispersed over the frequency spectrum, especially in the higher 
frequency results. 

The efficiency of the implemented Ritz algorithms is also investigated by an earthquake response analysis of 
the same bridge. The seismic load case is the three recorded ground motion components of the 1988 Saguenay 
earthquake in Quebec, Canada. In the present study, the peak horizontal ground acceleration is scaled to a 
maximum of 0.2g. 

The horizontal transverse component of the displacements is plotted in Figure 2. The displacement time history 
response shows that the results obtained by using 30 mode shapes are in good agreement with the exact solutions. 
The results also show that even more accourate results can be obtained by the case of using only 10 derived Ritz 
vectors. The CPU time required by the Derived Ritz algorithm is only 11% of that required by the subspace 
iteration method, which represent a substantial saving. 

The base moment time history responses are plotted in Figures 3. The results show a significant error in the time 
history response of the internal forces. The discrepancy is still unacceptably high even though 100 mode shapes 
are used in the analysis. This is consistent with the predictions by the new cut-off criterion ?I L . The dynamic 
mass represented by 100 mode shapes is only 59.9%, whereas the representation of the dynamic mass by 30 DRV 
vectors is about 83% of the total activated mass. The good agreement of the results presented in Figure 3 confirms 
the accuracy of the error estimate by r/L. 

The computational time, when load-dependent Ritz vectors are applied as the transformation basis. is reduced 
by 11 to 16 times in comparison to the CPU time of the exact solution. 

CONCLUSIONS 

This paper presents a number of Ritz algorithms, including the Lanczos, DRV vectors and Ritz-Wilson methods. 
These analysis procedures and the combined selective and partial reorthogonalization scheme have been imple-
mented in a computer program for dynamic analysis of bridges. The vibrational properties and the dynamic 
time history response of a five-span composite concrete slab on steel box girder bridge have been analyzed by the 
computer program to verify and illustrate the capabilities of the implemented algorithms. For the determination 
of the number of Ritz vectors needed to be included in the multi-directional seismic response analysis, a cut-off 
criterion based on the concept of effective mass participation has been developed and verify as the efficient and 
accurate measure. 
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Table 1: Vibration frequencies of example bridge 

otal number of DOF - 3008 

Mode no. Exact 
value 

[ Hz] 

Converged 
value 

Subspace 
iteration 
method 

[ Hz ] 

Converged 
value 

Lanczos*  
method 

(39 Lanczos) 
k vectors / 

[ Hz ] 

Converged 
value 

Lanczos**  
method 

(36 DRV \ 
k vectors J 

[ Hz ] 

Approx. 
Value 

Lanczos**  
method 

(15 Lanczos\ 
k vectors J 

[ Hz ] 

Approx. 
value 

Lanczos**  
method 

(15 DRV \ 
l vectors 1 

[ Hz ] 

Apg
u
ro

e
x. 

LWYD**  
method 

(15 Wilson's\ 
\.Ritz vectors' 

[ Hz ] 

1 0.962 0.962 0.962 0.962 0.962 0.962 0.962 
2 1.368 1.368 1.368 1.368 1.368 1.368 1.368 
3 1.896 1.896 1.896 1.896 1.896 1.896 1.896 
4 2.095 2.095 2.095 2.095 2.095 2.095 2.095 
5 2.424 2.424 2.424 2.424 2.424 2.424 2.424 
6 2.804 2.804 2.804 2.804 2.804 2.804 2.804 
7 3.063 3.063 3.063 3.063 3.073 
8 3.117 3.117 3.117 3.117 3.120 3.117 3.117 
9 3.126 3.126 3.126 3.126 3.126 3.126 
10 3.136 3.136 3.136 3.136 3.239 4.023 
11 3.969 3.969 3.969 3.969 3.971 3.981 4.024 
12 4.057 4.087 4.087 4.087 4.089 4.088 
13 4.530 4.530 4.530 4.530 4.704 4.601 
14 4.689 4.689 4.689 4.689 4.879 4.716 
15 4.901 4.901 4.901 
16 5.016 5.183 
17 5.236 5.236 5.503 5.270 
18 5.613 5.613 5.618 

(20)  6.427 6.678 6.737 
(21)  7.117 7.154 
(24) 7.531 7.536 
(28) 8.560 8.757 

Total CPU time 86.78 s 36.96 s 36.89 s 33.20 s 31.67 s 31.86 s 
cPu time of 63.51s 13.69s 13.628 9.185 9.02s 9.34s 

eigen solution 3.54 ;" *** 3.92 s *** 3.85 s 
* - randomly chosen st irting vector 

** - starting vector chosen as displacement vector obtained 
from a spatial distribution of load in Y - direction 

*** - CPU time of Sturm sequence check included 
in CPU time of eigensolution 

Bridge 

           

       

p 

 

        

        

        

           

            

            

            

88.39 141.312 

Hull Pier 1 Pier 2 

159.102 

Unit: m 
(a) Bridge elevation 

141.312 88.39  

Pier 3 Pier 4 Ottawa 

Figure 1: Elevation and cross-sectional dimensions of example bridge 
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Figure 2: Displacement time history response of example bridge 
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Figure 3: Base moment time history response of example bridge at Pier 3 
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